
slides for

theory lectures

(DON’T SKIP THEM, THEY ARE SUPER
IMPORTANT 🤓)

Subscribe here

Follow me here

https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://twitter.com/jonasschmedtman

📖 TABLE OF CONTENTS: THEORY LECTURES (CLICK THE TITLES)

What Is Node.js and Why Use It?

Blocking and Non-Blocking: Asynchronous Nature of Node.js

An Overview of How the Web Works

Static vs Dynamic vs API

Node, V8, Libuv and C++

Processes, Threads and the Thread Pool

The Node.js Event Loop

Events and Event-Driven Architecture

Introduction to Streams

How Requiring Modules Really Works

What is Express?

APIs and RESTful API Design

Middleware and the Request-Response Cycle

What is MongoDB?

What Is Mongoose?

Intro to Back-End Architecture: MVC, Types of Logic, and More

An Overview of Error Handling

How Authentication with JWT Works

Security Best Practices

MongoDB Data Modelling

Designing Our Data Model

Credit Card Payments with Stripe

Final Considerations

Front-End vs. Back-End Web Development

2

1

3

4

5

6

7

8

9

10

11

12

14

13

15

16

17

18

19

20

21

22

23

24

SECTION 2 —
INTRODUCTION TO

NODE.JS

SECTION

LECTURE

WHAT IS NODE.JS AND WHY USE IT?

INTRODUCTION TO NODE.JS

WHAT IS NODE.JS?

NODE.JS IS A JAVASCRIPT RUNTIME

BUILT ON GOOGLE’S OPEN-SOURCE

V8 JAVASCRIPT ENGINE.

NODE.JS IS A JAVASCRIPT RUNTIME

BUILT ON GOOGLE’S OPEN-SOURCE

V8 JAVASCRIPT ENGINE.

NODE.JS

🤔

NODE.JS: JAVASCRIPT OUTSIDE OF THE BROWSER

BROWSER NODE.JS

V8

JAVASCRIPT ON THE SERVER!

Perfect conditions for using Node.js
as a web server

We can use JavaScript on the server-
side of web development 😁

Build fast, highly scalable network
applications (back-end)

👉 Single-threaded, based on event driven, non-blocking
I/O model 🤯 😅

👉 Perfect for building fast and scalable data-intensive
apps;

👉 Companies like have
started using node in production;

👉 JavaScript across the entire stack: faster and more
efficient development;

👉 NPM: huge library of open-source packages available
for everyone for free;

👉 Very active developer community.

WHY AND WHEN TO USE NODE.JS?

USE NODE.JS

👉 API with database behind it (preferably NoSQL);

👉 Data streaming (think YouTube);

👉 Real-time chat application;

👉 Server-side web application.

DON’T USE

👉 Applications with heavy server-side processing
(CPU-intensive).

NODE.JS PRO
S

SECTION

LECTURE

BLOCKING AND NON-BLOCKING:
ASYNCHRONOUS NATURE OF NODE.JS

INTRODUCTION TO NODE.JS

SYNCHRONOUS VS. ASYNCHRONOUS CODE (BLOCKING VS. NON-BLOCKING)

SYNCHRONOUS

BLOCKING 👎

ASYNCHRONOUS

NON-BLOCKING 👍

THE ASYNCHRONOUS NATURE OF NODE.JS: AN OVERVIEW

NODE.JS PROCESS
This is where our app runs

SINGLE
THREAD

Login

Requesting
data

This is where our
code is executed.
Only one thread

Read large
text file

Login

Login

Requesting
data

Requesting
data

Login

Requesting
data

BLOCKED

(Oversimplified
version)

SYNCHRONOUS

WAY

👉 It’s YOUR job as a developer
to avoid this kind of situation!

THE ASYNCHRONOUS NATURE OF NODE.JS: AN OVERVIEW

NODE.JS PROCESS
This is where our app runs

SINGLE
THREAD

This is where our
code is executed.
Only one thread

Login

Requesting
data

Login

Requesting
data

“BACK-
GROUND”

This is where
time-consuming
tasks should be

executed!

More on this later!

(Oversimplified
version)

ASYNCHRONOUS

WAY

👉 This is why we use so many
callback functions in Node.js

👉 Callbacks ≠ Asynchronous

Display
read data

Read large
text file

👉 Non-blocking I/O model

THE PROBLEM: CALLBACK HELL...

CALLBACK HELL

👉 SOLUTION: Using Promises or Async/Await [Optional Section]

SECTION 3 —
INTRODUCTION TO

BACK-END WEB
DEVELOPMENT

SECTION

LECTURE

AN OVERVIEW OF HOW THE WEB WORKS

INTRODUCTION TO BACK-END WEB
DEVELOPMENT

WHAT HAPPENS WHEN WE ACCESS A WEBPAGE

CLIENT
(e.g. browser)

*

SERVER

🌐

REQUEST

RESPONSE

👉 Request-response model or Client-server architecture

GET /maps HTTP/1.1

Host: www.google.com
User-Agent: Mozilla/5.0
Accept-Language: en-US

<BODY>

WHAT HAPPENS WHEN WE ACCESS A WEBPAGE

HTTP REQUEST

HTTP RESPONSE

TCP/IP socket connection

1

DNS

DN
S

LO
O

KU
P

3

4

SERVER

🌐

Start line: HTTP method + request target + HTTP version

HTTP request headers (many different possibilities)

2

Request body (only when sending data to server, e.g. POST)

HTTP/1.1 200 OK

Date: Fri, 18 Jan 2021
Content-Type: text/html
Transfer-Encoding: chunked

<BODY>

Start line: HTTP version + status code + status message

HTTP response headers (many different possibilities)

Response body (most responses)

CLIENT
(e.g. browser)

*
h"ps://www.google.com/maps

h"ps://216.58.211.206:443

Protocol
(HTTP or HTTPS)

Domain name ResourceProtocol
(HTTP or HTTPS)

GET /maps HTTP/1.1

Host: www.google.com
User-Agent: Mozilla/5.0
Accept-Language: en-US

<BODY>

WHAT HAPPENS WHEN WE ACCESS A WEBPAGE

HTTP REQUEST

HTTP RESPONSE

TCP/IP socket connection

1

DNS

DN
S

LO
O

KU
P

3

4

SERVER

🌐

Start line: HTTP method + request target + HTTP version

HTTP request headers (many different possibilities)

2

Request body (only when sending data to server, e.g. POST)

HTTP/1.1 200 OK

Date: Fri, 18 Jan 2021
Content-Type: text/html
Transfer-Encoding: chunked

<BODY>

Start line: HTTP version + status code + status message

HTTP response headers (many different possibilities)

Response body (most responses)

CLIENT
(e.g. browser)

*
h"ps://www.google.com/maps

h"ps://216.58.211.206:443

5
index.html is the first to be loaded

👇
Scanned for assets: JS, CSS, images

👇
Process is repeated for each file

SECTION

LECTURE

FRONT-END VS. BACK-END WEB
DEVELOPMENT

INTRODUCTION TO BACK-END WEB
DEVELOPMENT

FRONT-END AND BACK-END

BROWSER

WEB SERVER

FRONT-END BACK-END

Files

App
HTTP
Server

DATABASE

FRONT-END STACK BACK-END STACK

SECTION

LECTURE

STATIC VS DYNAMIC VS API

INTRODUCTION TO BACK-END WEB
DEVELOPMENT

STATIC WEBSITES VS DYNAMIC WEBSITES
DY

N
A
M
IC

ST
A
T
IC

DATABASE BROWSERGET
DATA

BUILD
WEBSITE

TEMPLATE

BROWSER

👉 JavaScript ≠ Dynamic

SERVER-SIDE RENDERING

👉 Web application = Dynamic website + Functionality

THIS COURSE 🚀 😍

DYNAMIC WEBSITES VS API-POWERED WEBSITES
A
PI DATABASE GET

DATA
JSON BROWSER BUILD

WEBSITE

TEMPLATE

DY
N
A
M
IC

DATABASE BUILD
WEBSITE

BROWSERGET
DATA

TEMPLATE

BUILDING API CONSUMING API

SERVER-SIDE RENDERED

CLIENT-SIDE RENDERED

ONE API, MANY CONSUMERS

API
NATIVE

MOBILE APP

NATIVE
MOBILE APP

NATIVE
APP

BROWSERS

NATIVE
APP

h"ps://www.jonas.io/api/myCourseData

SECTION 4 —
HOW NODE.JS WORKS:

A LOOK BEHIND THE
SCENES

SECTION

LECTURE

NODE, V8, LIBUV AND C++

HOW NODE.JS WORKS: A LOOK BEHIND
THE SCENES

THE NODE.JS ARCHITECTURE BEHIND THE SCENES

THREAD POOL

Thread
#3

Thread
#4

Thread
#1

Thread
#2

http-parser c-ares OpenSSL zlib

C++
JS &
C++

JS &
C++

OUR
JAVASCRIPT

CODE

100%
JS

EVENT LOOP

SECTION

LECTURE

PROCESSES, THREADS AND THE THREAD
POOL

HOW NODE.JS WORKS: A LOOK BEHIND
THE SCENES

NODE PROCESS AND THREADS

NODE.JS PROCESS (Instance of a program in execution on a computer)

SINGLE THREAD (Sequence of instructions)

Initialize program

START EVENT LOOP

Thread
#1

THREAD POOL

Thread
#2

Thread
#3

Thread
#4

OFFLOADING

👉 Additional 4 threads (or more)

👉 Offload work from the event loop

👉 Handle heavy (“expensive”) tasks:

👉 File system APIs

👉 Cryptography

👉 Compression

👉 DNS lookups

THREAD POOL:

Register event callbacks

Require modules

Execute “top-level” code

SECTION

LECTURE

THE NODE.JS EVENT LOOP

HOW NODE.JS WORKS: A LOOK BEHIND
THE SCENES

THE HEART OF NODE.JS: THE EVENT LOOP

NODE.JS PROCESS

SINGLE THREAD

EVENT LOOP

👉 All the application code that is inside
callback functions (non-top-top-level code)

👉 Node.js is build around callback functions

👉 Event-driven architecture:

👉 Events are emitted

👉 Event loops picks them up

👉 Callbacks are called

👉 Event loop does orchestration

EVENT LOOP:

New HTTP
request

Timer expired

Finished file
reading

E

E

E

THE EVENT LOOP IN DETAIL

Any pending
timers or I/O

tasks?

YES

NO
Exit program

Expired timer callbacks CC

START

CALLBACK
QUEUES

CCCCI/O polling and callbacks

CCClose callbacks

setImmediate callbacks C

C

CCC

PROCESS.NEXTTICK() QUEUE

OTHER MICROTASKS QUEUE
(Resolved promises)

SUMMARY OF THE EVENT LOOP: NODE VS. OTHERS

SINGLE THREAD
WITH EVENT LOOP

OFFLOADING

NEW THREAD

NEW THREAD

NEW THREAD

NEW THREAD

NEW THREAD

DON’T BLOCK!

👉 Don’t use sync versions of functions in
fs, crypto and zlib modules in your
callback functions

👉 Don’t perform complex calculations
(e.g. loops inside loops)

👉 Be careful with JSON in large objects

👉 Don’t use too complex regular
expressions (e.g. nested quantifiers)

SECTION

LECTURE

EVENTS AND EVENT-DRIVEN
ARCHITECTURE

HOW NODE.JS WORKS: A LOOK BEHIND
THE SCENES

OBSERVER PATTERN

THE EVENT-DRIVEN ARCHITECTURE

Event emitter
EMITS

EVENTS

Event listener
Attached

callback functionCALLS

NEW REQUEST
ON SERVER

‘request’
event

Request received

👉 Instance of EventEmitter class

EMITTER LISTENER

SECTION

LECTURE

INTRODUCTION TO STREAMS

HOW NODE.JS WORKS: A LOOK BEHIND
THE SCENES

WHAT ARE STREAMS?

Used to process (read and write) data piece by piece (chunks),

without completing the whole read or write operation, and

therefore without keeping all the data in memory.

STREAMS

👉 Perfect for handling large volumes of data, for example videos;

👉 More efficient data processing in terms of memory (no need to keep all data in
memory) and time (we don’t have to wait until all the data is available).

DUPLEX STREAMS

WRITABLE STREAMS

TRANSFORM STREAMS

NODE.JS STREAMS FUNDAMENTALS

READABLE STREAMS

DESCRIPTION
👇

Streams from which
we can read
(consume) data

IMPORTANT EVENTS
👇

👉 data
👉 end

IMPORTANT FUNCTIONS
👇

👉 pipe()
👉 read()

EXAMPLE
👇

👉 http requests
👉 fs read streams

Streams to which we
can write data

👉 drain
👉 finish

👉 write()
👉 end()

👉 http responses
👉 fs write streams

Streams that are
both readable and
writable

👉 net web socket

Duplex streams that
transform data as it
is written or read

👉 zlib Gzip creation

👉 Streams are instances of
the EventEmitter class!

CONSUME STREAMS

SECTION

LECTURE

HOW REQUIRING MODULES REALLY WORKS

HOW NODE.JS WORKS: A LOOK BEHIND
THE SCENES

THE COMMONJS MODULE SYSTEM

👉 Each JavaScript file is treated as a separate module;

👉 Node.js uses the CommonJS module system: require(), exports or module.exports;

👉 ES module system is used in browsers: import/export;

👉 There have been attempts to bring ES modules to node.js (.mjs).

Where does it come from?

WHAT HAPPENS WHEN WE REQUIRE() A MODULE

RESOLVING &
LOADING WRAPPING EXECUTION

RETURNING
EXPORTS CACHING

RESOLVING &
LOADING

/ Start with core modules;

0 If begins with ‘./‘ or ‘../‘ 👉 Try to load developer module;

1 If no file found 👉 Try to find folder with index.js in it;

2 Else 👉 Go to node_modules/ and try to find module there.

PATH RESOLVING: HOW NODE DECIDES WHICH MODULE TO LOAD
👉 Core modules

👉 Developer modules

👉 3rd-party modules (from NPM)

WHAT HAPPENS WHEN WE REQUIRE() A MODULE

LOADING WRAPPING EXECUTION
RETURNING

EXPORTS CACHING
RESOLVING &

LOADING WRAPPING

👉 require: function to require modules;

👉 module: reference to the current module;

👉 exports: a reference to module.exports, used to export object from a module;

👉 __filename: absolute path of the current module’s file;

👉 __dirname: directory name of the current module.

Where does it come from?

WHAT HAPPENS WHEN WE REQUIRE() A MODULE

LOADING WRAPPING EXECUTION
RETURNING

EXPORTS CACHING
RESOLVING &

LOADING EXECUTION
RETURNING

EXPORTSWRAPPING

👉 require function returns exports of the required module;

👉 module.exports is the returned object (important!);

👉 Use module.exports to export one single variable, e.g. one
class or one function (module.exports = Calculator);

👉 Use exports to export multiple named variables
(exports.add = (a, b) => a + b);

👉 This is how we import data from one module into another;

MODULE
1

MODULE
2

Requiring module 2

Exporting from module 2

Importing to module 1

WHAT HAPPENS WHEN WE REQUIRE() A MODULE

LOADING WRAPPING EXECUTION
RETURNING

EXPORTS CACHING
RESOLVING &

LOADING EXECUTION CACHING
RETURNING

EXPORTSWRAPPING

SECTION 6 —
EXPRESS: LET'S START

BUILDING THE
NATOURS API!

SECTION

LECTURE

WHAT IS EXPRESS?

EXPRESS: LET'S START BUILDING THE
NATOURS API!

WHAT IS EXPRESS, AND WHY USE IT?

👉 Express is a minimal node.js framework, a higher level of
abstraction;

👉 Express contains a very robust set of features: complex
routing, easier handling of requests and responses,
middleware, server-side rendering, etc.;

👉 Express allows for rapid development of node.js
applications: we don’t have to re-invent the wheel;

👉 Express makes it easier to organize our application into the
MVC architecture.

SECTION

LECTURE

APIS AND RESTFUL API DESIGN

EXPRESS: LET'S START BUILDING THE
NATOURS API!

WHAT IS AN API ANYWAY?

Application Programming Interface: a piece of software that can be used by

another piece of software, in order to allow applications to talk to each other.

API

👉 Web APIs 👉 But, “Application” can be other things:

👉 Node.js’ fs or http APIs (“node APIs”);

👉 Browser’s DOM JavaScript API;

👉 With object-oriented programming, when exposing
methods to the public, we’re creating an API;

👉 ...

THE REST ARCHITECTURE

1 Separate API into logical
resources

Expose structured,
resource-based URLs2

Use HTTP methods (verbs)3

Send data as JSON
(usually)4

Be stateless5

THE REST ARCHITECTURE

1 Separate API into logical
resources

Expose structured,
resource-based URLs2

Use HTTP methods (verbs)3

Send data as JSON
(usually)4

Be stateless5

👉 Resource: Object or representation of something, which

has data associated to it. Any information that can be

named can be a resource.

tours users reviewsreviews

Expose structured,
resource-based URLs2

https://www.natours.com/addNewTour

URL

ENDPOINT

/getTour

/updateTour

/deleteTour

/getToursByUser

/deleteToursByUser

👉 Endpoints should contain
only resources (nouns),
and use HTTP methods
for actions!

BAD 👎

Use HTTP methods (verbs)3

THE REST ARCHITECTURE

1 Separate API into logical
resources

Expose structured,
resource-based URLs2

Use HTTP methods (verbs)3

4

5

Expose structured,
resource-based URLs2

Use HTTP methods (verbs)3

GET /tours

POST /tours

/getTour

/updateTour

/addNewTour

/deleteTour DELETE /tours/7

PUT /tours/7

PATCH /tours/7

HTTP METHODS

👉 Create

👉 Read

👉 Update

👉 Delete

CRUD
OPERATIONS

/getToursByUser

/deleteToursByUser

GET /users/3/tours

DELETE /users/3/tours/9

👉 Possibilities
are endless!

Tour id

/7

Send data as JSON
(usually)

Be stateless

THE REST ARCHITECTURE

1 Separate API into logical
resources

Expose structured,
resource-based URLs2

Use HTTP methods (verbs)3

4

5

Expose structured,
resource-based URLs2

Use HTTP methods (verbs)3

Send data as JSON
(usually)

Be stateless

Send data as JSON
(usually)4

String Value Key-value pair

Array

RESPONSE
FORMATTING

👉 JSend

👉 JSON:API

👉 OData JSON Protocol

👉 ...

Object

h"ps://www.natours.com/tours/5

THE REST ARCHITECTURE

1 Separate API into logical
resources

Expose structured,
resource-based URLs2

Use HTTP methods (verbs)3

4

5

Expose structured,
resource-based URLs2

Use HTTP methods (verbs)3

Send data as JSON
(usually)

Be stateless

Send data as JSON
(usually)4

Be stateless5

👉 Stateless RESTful API: All state is handled on the client. This means that each

request must contain all the information necessary to process a certain request.

The server should not have to remember previous requests.

loggedIn👉 Examples of state: currentPage

GET /tours/nextPage
WEB

SERVER
nextPage = currentPage + 1

send(nextPage)

STATE ON SERVER

BAD 👎

GET /tours/page/6 WEB
SERVER

send(6)

STATE COMING FROM CLIENT

currentPage = 5

SECTION

LECTURE

MIDDLEWARE AND THE REQUEST-
RESPONSE CYCLE

EXPRESS: LET'S START BUILDING THE
NATOURS API!

THE ESSENCE OF EXPRESS DEVELOPMENT: THE REQUEST-RESPONSE CYCLE

RESPONSE
INCOMING
REQUEST

// Middleware

...

next()

// Middleware

...

next()

// Middleware

...

next()

// Middleware

...

res.send(...)

MIDDLEWARE STACK

RES
OBJ

REQ
OBJ

👉 E.g: parsing body 👉 E.g: logging 👉 E.g: setting headers 👉 E.g: router

REQUEST-RESPONSE CYCLE

👉 “Pipeline”👉 “Everything is middleware” (even routers)
👉 Order as defined in the code!

SECTION 7 —
INTRODUCTION TO

MONGODB

SECTION

LECTURE

WHAT IS MONGODB?

INTRODUCTION TO MONGODB

MONGODB: AN OVERVIEW

DATABASE

DATABASE

> >

COLLECTIONS

(“Tables”)

DOCUMENTS

(“Rows”)

post

user

review

blog

users

reviews

👉 NoSQL

WHAT IS MONGODB?

👉 Document based: MongoDB stores data in documents (field-value pair data structures, NoSQL);

👉 Scalable: Very easy to distribute data across multiple machines as your users and amount of data grows;

👉 Flexible: No document data schema required, so each document can have different number and type of fields;

👉 Performant: Embedded data models, indexing, sharding, flexible documents, native duplication, etc.

👉 Free and open-source, published under the SSPL License.

“MongoDB is a document database with the scalability and flexibility that you want

with the querying and indexing that you need”

MONGODB

KEY MONGODB FEATURES:

RELATIONAL DATABASE

DOCUMENTS, BSON AND EMBEDDING

DOCUMENT STRUCTURE

👉 BSON: Data format MongoDB uses for data storage. Like

JSON, but typed. So MongoDB documents are typed.

Unique ID

Fields

Embedded
documents

Column

Values (typed)

👉 Embedding/Denormalizing: Including related data into a single document.

This allows for quicker access and easier data models (it’s not always the

best solution though).

👉 Data is always normalized

“JOIN tables”

Reference by
comments_id

SECTION 8 —
USING MONGODB WITH

MONGOOSE

SECTION

LECTURE

WHAT IS MONGOOSE?

USING MONGODB WITH MONGOOSE

WHAT IS MONGOOSE, AND WHY USE IT?

👉 Mongoose is an Object Data Modeling (ODM) library for
MongoDB and Node.js, a higher level of abstraction;

👉 Mongoose allows for rapid and simple development of
mongoDB database interactions;

👉 Features: schemas to model data and relationships, easy
data validation, simple query API, middleware, etc;

👉 Mongoose schema: where we model our data, by describing
the structure of the data, default values, and validation;

👉 Mongoose model: a wrapper for the schema, providing an
interface to the database for CRUD operations.

MODELSCHEMA

SECTION

LECTURE

INTRO TO BACK-END ARCHITECTURE:
MVC, TYPES OF LOGIC, AND MORE

USING MONGODB WITH MONGOOSE

MVC ARCHITECTURE IN OUR EXPRESS APP

ROUTERREQUEST

tourController.js

userController.js

...

tourModel.js

userModel.js

...

RESPONSE

tourRouter.js

userRouter.js

...
overview.pug

tour.pug

login.pug

...

RESPONSECONTROLLER

APPLICATION LOGIC

MODEL

BUSINESS LOGIC

VIEW

PRESENTATION LOGIC

APPLICATION VS. BUSINESS LOGIC

CONTROLLER MODELAPPLICATION LOGIC BUSINESS LOGIC

👉 Code that actually solves the business problem we set
out to solve;

👉 Directly related to business rules, how the business
works, and business needs;

👉 Examples:

👉 Creating new tours in the database;

👉 Checking if user’s password is correct;

👉 Validating user input data;

👉 Ensuring only users who bought a tour can review it.

👉 Code that is only concerned about the application’s
implementation, not the underlying business problem
we’re trying to solve (e.g. showing and selling tours);

👉 Concerned about managing requests and responses;

👉 About the app’s more technical aspects;

👉 Bridge between model and view layers.

👉 Fat models/thin controllers: offload as much logic as possible into the

models, and keep the controllers as simple and lean as possible.

SECTION 9 —
ERROR HANDLING

WITH EXPRESS

SECTION

LECTURE

AN OVERVIEW OF ERROR HANDLING

ERROR HANDLING WITH EXPRESS

ERROR HANDLING IN EXPRESS: AN OVERVIEW

OPERATIONAL ERRORS PROGRAMMING ERRORS

👉 Invalid path accessed;

👉 Invalid user input (validator error
from mongoose);

👉 Failed to connect to server;

👉 Failed to connect to database;

👉 Request timeout;

👉 Etc...

Problems that we can predict will
happen at some point, so we just need
to handle them in advance.

👉 Reading properties on undefined;

👉 Passing a number where an object
is expected;

👉 Using await without async;

👉 Using req.query instead of
req.body;

👉 Etc...

Bugs that we developers introduce
into our code. Difficult to find and
handle.

ERROR
HANDLING

MIDDLEWARE

RESPONSE

ERROR

ERROR ERROR

ERROR

ERROR

SECTION 10 —
AUTHENTICATION,

AUTHORIZATION AND
SECURITY

SECTION

LECTURE

HOW AUTHENTICATION WITH JWT WORKS

AUTHENTICATION, AUTHORIZATION AND
SECURITY

HOW JSON WEB TOKEN (JWT) AUTHENTICATION WORKS

POST /login {email, password}
1

If user && password,

Create unique JWT

2

JWT
3

Store JWT (cookie

or localStorage)

4

LO
G
IN

A
C
C
ES

S
 GET /someProtectedRoute JWT

5

If Valid JWT,

Allow access

6

PROTECTED DATA

7

CLIENT SERVER

SECRET

HTTPS

HTTPS

WHAT A JWT LOOKS LIKE

SECRET

VERIFYING

SIGNING

HOW SIGNING AND VERIFYING WORKS

SIGNATURE

HEADER +
PAYLOAD

SECRET

JWT CLIENT

SECRET

TEST
SIGNATURE

JWT
HEADER +
PAYLOAD

COMPARE WITH ORIGINAL SIGNATURE

ORIGINAL
SIGNATURE

test signature === signature 👉 Data has not been modified 👉 Authenticated

test signature !== signature 👉 Data has been modified 👉 Not authenticated

👉 Without the secret, one will be able to manipulate the JWT data, because they cannot create a valid signature for the new data!

SECTION

LECTURE

SECURITY BEST PRACTICES

AUTHENTICATION, AUTHORIZATION AND
SECURITY

SECURITY BEST PRACTICES AND SUGGESTIONS

👉 BRUTE FORCE ATTACKS

✅ Use bcrypt (to make login requests slow)

↘ Implement rate limiting (express-rate-limit)

⚛ Implement maximum login attempts

👉 COMPROMISED DATABASE

✅ Strongly encrypt passwords with salt and hash (bcrypt)

✅ Strongly encrypt password reset tokens (SHA 256)

👉 CROSS-SITE SCRIPTING (XSS) ATTACKS

↘ Store JWT in HTTPOnly cookies

↘ Sanitize user input data

↘ Set special HTTP headers (helmet package)

👉 DENIAL-OF-SERVICE (DOS) ATTACK

↘ Implement rate limiting (express-rate-limit)

↘ Limit body payload (in body-parser)

✅ Avoid evil regular expressions

👉 NOSQL QUERY INJECTION

✅ Use mongoose for MongoDB (because of SchemaTypes)

↘ Sanitize user input data

👉 OTHER BEST PRACTICES AND SUGGESTIONS

✅ Always use HTTPS

✅ Create random password reset tokens with expiry dates

✅ Deny access to JWT after password change

✅ Don’t commit sensitive config data to Git

✅ Don’t send error details to clients

⚛ Prevent Cross-Site Request Forgery (csurf package)

⚛ Require re-authentication before a high-value action

⚛ Implement a blacklist of untrusted JWT

⚛ Confirm user email address after first creating account

⚛ Keep user logged in with refresh tokens

⚛ Implement two-factor authentication

↘ Prevent parameter pollution causing Uncaught Exceptions

SECTION 11 —
MODELLING DATA AND
ADVANCED MONGOOSE

SECTION

LECTURE

MONGODB DATA MODELLING

MODELLING DATA AND ADVANCED
MONGOOSE

“DATA... WHAT? 🤔”

DATA MODELLING

1 Different types of relationships
between data

Referencing/normalization vs.
embedding/denormalization2

Embedding or referencing
other documents?3

Types of referencing4

Real-world
scenario

Online
shop

Example

👇

Unstructured
data

Structured, logical
data model

products

categories

customers
orders

cart
suppliers

products

categories

customers

orders cart

suppliers

1. TYPES OF RELATIONSHIPS BETWEEN DATA

1:1

MANY:MANY

1:MANY

👉 1:FEW 👉 1:MANY 👉 1:TON

actor

actor

actor

movie

namemovie (1 movie can only have 1 name)

(One movie can have many actors, but
one actor can also play in many movies)

actor

actor

actor

movie

movie

movie

app log

log

log

log

millions...

movie award

award

award

(1 movie can win many awards)

movie review

review

review

review

hundreds/thousands

2. REFERENCING VS. EMBEDDING

EMBEDDING/
DENORMALIZATION

REFERENCING /
NORMALIZATION

EMBEDDED / DENORMALIZED

Main
document

Embedded
documents

Referencing
(child)

REFERENCED / NORMALIZED
mo
vi
e

ac
to

r
ac

to
r

mo
vi
e

👍 Performance: we can get all the information in one query

👎 Impossible to query the embedded document on its own
👍 Performance: it’s easier to query each document on its own

👎 We need 2 queries to get data from referenced document

DATA CLOSENESS3

(How “much” the data is
related, how we want to query) Movies + Images

DATA ACCESS PATTERNS2

(How often data is read and
written. Read/write ratio)

1 RELATIONSHIP TYPE

(How two datasets are
related to each other)

3. WHEN TO EMBED AND WHEN TO REFERENCE? A PRACTICAL FRAMEWORK

EMBEDDING REFERENCING

👉 1:FEW

👉 1:MANY

👉 1:MANY

👉 1:TON

👉 MANY:MANY

👉 Data is mostly read

👉 Data does not change quickly

👉 (High read/write ratio)

👉 Data is updated a lot

👉 (Low read/write ratio)

👉 Datasets really belong together
👉 We frequently need to query

both datasets on their own

👉 Combine all 3 criteria
to take decision!

Movies + Reviews

?Movies + Images (100)

Movies + Images

User + Email Addresses

PARENT REFERENCING

4. TYPES OF REFERENCING

TWO-WAY REFERENCINGCHILD REFERENCING

👉 1:FEW

👉 1:MANY 👉 MANY:MANY

mo
vi
e

ac
to
r

ap
p

lo
g

lo
g

ap
p

lo
g

lo
g BEST SOLUTION

2M

👉 1:TON

SUMMARY 🥳

👉 The most important principle is: Structure your data to match the ways that your application queries and updates data;

👉 In other words: Identify the questions that arise from your application’s use cases first, and then model your data so that
the questions can get answered in the most efficient way;

👉 In general, always favor embedding, unless there is a good reason not to embed. Especially on 1:FEW and 1:MANY
relationships;

👉 A 1:TON or a MANY:MANY relationship is usually a good reason to reference instead of embedding;

👉 Also, favor referencing when data is updated a lot and if you need to frequently access a dataset on its own;

👉 Use embedding when data is mostly read but rarely updated, and when two datasets belong intrinsically together;

👉 Don’t allow arrays to grow indefinitely. Therefore, if you need to normalize, use child referencing for 1:MANY
relationships, and parent referencing for 1:TON relationships;

👉 Use two-way referencing for MANY:MANY relationships.

SECTION

LECTURE

DESIGNING OUR DATA MODEL

MODELLING DATA AND ADVANCED
MONGOOSE

THE NATOURS DATA MODEL

locationstours

users reviews

bookings

▶ FEW:FEW

📙 Embedding

▶ 1:MANY

📗 Parent referencing

▶ 1:MANY

📗 Parent referencing

▶ 1:MANY

📗 Parent referencing

▶ 1:MANY

📗 Parent referencing

▶ FEW:FEW

📘 Child referencing

or

📙 Embedding

PC

CP
P

C

P

C

Parent

Child

PtourID: <id>

userID: <id>

tourID: <id>

userID: <id>

userID: [<id>,
<id>, ..., <id>]

to
ur

 g
ui

de
s

SECTION 13 —
ADVANCED FEATURES:

PAYMENTS, EMAIL,
FILE UPLOADS

SECTION

LECTURE

CREDIT CARD PAYMENTS WITH STRIPE

ADVANCED FEATURES: PAYMENTS, EMAIL,
FILE UPLOADS

FR
O

N
T-

EN
D

BA
CK

-E
N

D

STRIPE WORKFLOW

Request Checkout Session

Charge Credit Card using Session
PUBLIC KEY

Create Stripe Checkout Session
SECRET KEY

Session

BA
CK

-E
N

D

Use Stripe Webhook to Create New Booking

SECRET KEY

ON SUCCESS (ONLY FOR DEPLOYED WEBSITE)

SECTION

LECTURE

FINAL CONSIDERATIONS

ADVANCED FEATURES: PAYMENTS, EMAIL,
FILE UPLOADS

CHALLENGES (API) 🤓

👉 Implement restriction that users can only review a tour that they have

actually booked;

👉 Implement nested booking routes: /tours/:id/bookings and /

users/:id/bookings;

👉 Improve tour dates: add a participants and a soldOut field to each

date. A date then becomes like an instance of the tour. Then, when a user

books, they need to select one of the dates. A new booking will increase

the number of participants in the date, until it is booked out

(participants > maxGroupSize). So, when a user wants to book,

you need to check if tour on the selected date is still available;

👉 Implement advanced authentication features: confirm user email, keep

users logged in with refresh tokens, two-factor authentication, etc.

CHALLENGES (WEBSITE) 🤓

👉 Implement a sign up from, similar to the login form;

👉 On the tour detail page, if a user has taken a tour, allow them add a

review directly on the website. Implement a form for this;

👉 Hide the entire booking section on the tour detail page if current user has

already booked the tour (also prevent duplicate bookings on the model);

👉 Implement “like tour” functionality, with favourite tour page;

👉 On the user account page, implement the “My Reviews” page, where all

reviews are displayed, and a user can edit them. (If you know React ⚛,

this would be an amazing way to use the Natours API and train your skills!);

👉 For administrators, implement all the “Manage” pages, where they can

CRUD (create, read, update, delete) tours, users, reviews, and bookings.

END

