OLIDES FOR
THEORY LECTURES

(OON'T SKIP THEM. THEY ARE SUPER
MPORTANT <)

YW @JONASSCHMEDTMA

https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://codingheroes.io/resources/
https://twitter.com/jonasschmedtman

=E TABLE OF CONTENTS: THEORY LECTURES (CLICK THE TITLES)

€D What Is Node js and Why Use It? (D) APIs and RESTful API Design

e Blocking and Non-Blocking: Asynchronous Nature of Node.Js @ Middleware and the Request-Response Cycle
e An Overview of How the Web Works @ What i1s MongoDB?

° Front-End vs. Back-End Web Development @ What Is Mongoose?

° Static vs Dynamic vs AP @ Intro to Back-End Architecture: MVC, Types of Logic, and More
° Node, V8, Libuv and C++ @ An Overview of Error Handling

° Processes, Threads and the Thread Pool @ How Authentication with JWT Works

o The Node.Js Event Loop @ Security Best Practices

e Events and Event-Driven Architecture @ MongoDB Data Modelling

Q Introduction to Streams @ Designing Our Data Model

G How Requiring Modules Really Works @ Credit Card Payments with Stripe

@ What 1s Express? @ Final Considerations

SECTION 2 —
INTRODUCTION TO
NODE.JS

YW @JONASSCHMEDTM

SECTION
INESUDUCTION TO NODE JS

I_II_II

LECTURE
WHAT IS NODEJS AND WRY USE 117

WHAT 1S NODE.JS?

NODE.J3

NODE.JS IS A JAVASC

V3 JAVASCRI

BUILT ON GOOGLE'S OP

>

al

>

“N-SOURCE
“NGINE.

RUNTIM

NODE.Js: JAVASCRIPT OUTSIDE OF ThE BROWSER

HTML C55

B & Js

BROWSER

NODE.JS

JAVASCRIPT ON THE SERVER!

Pertect conditions for using Node.|s
as a web server

We can use Javascript on the server-
side of web development @

Build fast, highly scalable network
applications (back-end)

WHY AND WREN TO USE NODE.JS?

Single-threaded, based on event driven, non-blocking
/0 model & &

Perfect for building fast and scalable data-intensive
apps,

Companies like NETFLIX UBER P PayPal €Dy have
started using node In production;

JavaScript across the entire stack: faster and more
efficient development;

NPM: huge library of open-source packages available
for everyone for free;

Very active developer community.

APl with database behind it (preferably NoSQL);
Data streaming (think YouTube);
Real-time chat application;

Server-side web application.

Applications with heavy server-side processing
(CPU-intensive).

MrawLs e

YW @JONASSCHMEDTM

SECTION

INESUDUCTION TO NODE JS

LECTUR

BLUCKING AND NON-
ASYNCHRONUUS NAT

(i

3LUCKING

URE OF NODEJS

00
const fs = require('fs');

const fs = require('fs');
fsjreadFilef ' input.txt', 'utf-8', (err, data) => {

'utf-8');
consotle. log(data);

fs.readFileSync('itnput.txt’',
});
console. log('Reading file..."');

const input
console. log(input);

pLocking B3

THE ASYNCHRONOUS NATURE OF NODE.JS- AN OVERVIEW

(Oversimplified

NODE.JS PROCESS i

This is where our app runs

Read large
:i text file
= SINGLE
THREAD

77 ‘ Requ;zting
B BLOCKED

1Y \.—I\C\Iu led-

4

Requesting

a data Only one thread <~ It's YOUR job as a developer

to avoid this kind of situation!
) Login

THE ASYNCHRONOUS NATURE OF NODE.JS- AN OVERVIEW

(Oversimplified

NODE.JS PROCESS i

This is where our app runs

Read large

text file Display

read data

e SINGLE “BACK-
THREAD GROUND”

Requesting
data
This is where our This Is where

Requesting code is executed. time-consuming

data Only one thread tasks should be <~ Non-blocking 1/0 model
executed!

) Login More on this later!

<~ This 1s why we use so many

callback functions in Node.js

<~ Callbacks # Asynchronous

const fs = require('fs');

fs.readFile('start.txt', 'utf-8', (err, datal) => {
fs.readFile(${datal}.txt , 'utf-8', (err, data2) => {
fs.readFile('append.txt', 'utf-8', (err, data3) => {

fs.writeFile('final.txt', ${data2} ${data3} , 'utf-8', (err) => {
if (err) throw err;
console. log('Your file has been saved :D');

<~ SOLUTION: Using Promises or Async/Await [Optional Section]

SECTION 3 —
INTRODUCTION TO
BACK-END WEB

DEVELOPMENT

SECTION

NERODUCTION 10 BACK-END WEB
JEVELOPMENT

I_II_II

LECTURE
AN OVERVIEW OF ROW The WEB WORKS

YW @JONASSCHMEDTM

WHAT HAPPENS WHEN WE ACCESS A WEBPAGE

<~ Request-response model or Client-server architecture

REQUEST
CLIENT SERVER
(e.g. browser) -
_-:h — AN [/4

RESPONSE

WHAT HAPPENS WHEN WE ACCESS A WEBPAGE

‘ GET /maps HTTP/1.1 ‘ » Start line: HTTP method + request target + HTTP version

Host: www.google.com

216.58.211.206 User-Agent: Mozilla/5.0 — HTTP request headers (many different possibilities)
Accept-Language: en-US

‘ <BODY> ‘ » Request body (only when sending data to server, e.g. POST)

DNS LOOKUP

HTTP REQUEST e
CLIENT -_—

_ SERVER
(e.g. browser) Q TCP/IP socket connection _
+— R

AR
wummy
P

AN

(e

google.com HTTP RESPONSE a
v ‘ HTTP/1.1 200 OK ‘ » Start line: HTTP version + status code + status message
Protocol Domain name Resource Date: Fri, 18 Jan 2021
(HTTP or HTTPS) Content-Type: text/html — HTTP response headers (many different possibilities)
Transfer-Encoding: chunked

<BODY> » Response body (most responses)

WHAT HAPPENS WHEN WE ACCESS A WEBPAGE

‘ GET /maps HTTP/1.1 ‘ » Start line: HTTP method + request target + HTTP version

Host: www.google.com

216.58.211.206 User-Agent: Mozilla/5.0 — HTTP request headers (many different possibilities)
Accept-Language: en-US

‘ <BODY> ‘ » Request body (only when sending data to server, e.g. POST)

DNS LOOKUP

HTTP REQUEST e
CLIENT -_—

(e.g. browser) Q TCP/IP socket connection
—

AN

—
google.com HTTP RESPONSE o

=

index.html is the first to be loaded ‘ HTTP/1.1 200 OK ‘ » Start line: HTTP version + status code + status message
L$ Date: Fri, 18 Jan 2021

Scanned for assets: JS, CSS, images Content-Type: text/html — HTTP response headers (many different possibilities)
L} Transfer-Encoding: chunked

Process is repeated for each file

<BODY> » Response body (most responses)

YW @JONASSCHMEDTM

eV

LECTUR

RUNT-EN
LUPM

(i

SECTION

N RO
JEVELL

UCTION TO BACK-END WEB
PMENT

J Vo, BACK-ENU WEB

Al

FRONT-END AND BACIK-END

FR@NTFEND B/A\@\K=EN\\\D
WEB SERVER
) ™
— ‘ ' @Z pummmmmd DATABASE

_

\e
HTML C55

E E JS ﬂ‘@de ’mongoDB

PostgreSQL P

@
S 0

FRONT-END STACK

BACK-END STACK

YW @JONASSCHMEDTM

SECTION

NERODUCTION 10 BACK-END WEB
JEVELOPMENT

LECTUR
SIATIC Vo DYNAMIC VS AP

(i

STATIC WEBSITES VS DYNAMIC WEBSITES

8 Wp1127.0.0.1:8000/
THE FOREST THE SEA THE SNOW
HIKER EXPLORER. ADVENTURER
. ls e B Ee——

<~ JavaScript # Dynamic

SERVER-SIDE RENDERING

BUILD

@ Secure NU127.0.0.1:8000/
THE FOREST THE SEA THE SNOW
HIKER EXPLORER ADVENTURER
. 'S L& & |

WEBSITE

7

DYNAMIC

~~ Web application = Dynamic website + Functionality

DYNAMIC WEBSITES VS API-POWERED WEBSITES

THIS COURSE # ©

SERVER-SIDE RENDERED

CLIENT-SIDE RENDERED

CONSUMING API

P —

DYNAMIC

TEMPLATE

BUILDING API

TEMPLATE

ONE AP, MANY CONSUMERS

BROWSERS

v

NATIVE
MOBILE APP

jonas.io/api/myCourseData

NATIVE
MOBILE APP

id 1
ENE Build Websites with HTML5 and CSS3
rating 4.7

id

name The Complete JavaScript Course
rating 4.6

NATIVE
APP

NATIVE @

APP

id
name
rating

SECTION 4 —
HOW NODE.JS WORKS:
A LOOK BEHIND THE

SCENES

YW @JONASSCHMEDTM

=G TION

HOW NODEJs WORKS: A LUOK BERIND
THE SCENES

D
=

LECTUR
NODE. V8, LIBUV AND C++

(i

THE NODE.JS ARCHITECTURE BERIND THE SCENES

100%

OUR °

JAVASCRIPT
CODE

EVENT LOOP THREAD POOL

Thread | Thread
#1 #2

\./ Thread | Thread
#3 #4

YW @JONASSCHMEDTM

SECTION

HOW NODEJs WORKS: A LUOK BERIND
THE SCENES

=

I_II_II

ECTURE
PRUCESSED. THREADS AND THE THREAD
JOL

NODE PROCESS AND THREADS

NODE.JS PROCESS (Instance of a program in execution on a computer)

EVENT LOOP THREAD POOL

o
SINGLE THREAD (Sequence of instructions) | 4

Initialize program

e
¥

| greone e e
hd

et
V¥

g evncatbacs
V¥

Execute “top-level” code

| <~ Additional 4 threads (or more)
Require modules

THREAD POOL
<~ Offload work from the event loop

' Thread Thread :
Register event callbacks i i < Handle heavy (“expensive”) tasks:
FFLOP‘D\NG <~ File system APlIs
START EVENT LOOP 0
Thread Thread

C:)F
o o Cryptography

<~ Compression

a8
R

<~ DNS lookups

YW @JONASSCHMEDTM

SECTION

HOW NODEJs WORKS: A LUOK BERIND
THE SCENES

=

LECTUR
THE NODEJS EVENT LOOP

(i

THE HEART OF NODE.JS: THE EVENT LOOP

NODE.JS PROCESS L e

SINGLE THREAD

EVENT LOOP

a8
R

New HTTP
request E

<~ All the application code that is inside

callback functions (non-top-top-level code)
THREAD POOL

Thread Thread

noow <~ Node.js is build around callback functions

Timer expired E

Thread Thread
#3 #4

——— <~ Event-driven architecture:

reading E

<~ Events are emitted

<~ Event loops picks them up

<~ Callbacks are called

<~ Event loop does orchestration

setTimeout(() => {

START

CALLBACK
QUEUES

console. log('Timer expired!');

fs.readFile('file.txt', (e,

console. log('File read!"');

Any pending PROCESS.NEXTTICK() QUEUE
= timersor /0 l b
NO tasks?

OTHER MICROTASKS QUEUE
(Resolved promises)

somePromise.then((data) => {

console. log('Received data!');

SUMMARY OF TRE EVENT LOOP: NODE VS. OTHERS

SINGLE THREAD THREAD POOL
WITH EVENT LOOP Thread Thread

#1 #2

#3 #4

A Thread Thread

<~ Don't use sync versions of functions in
fs, crypto and z1ib modules in your
callback functions

<~ Don't perform complex calculations
(e.g. loops inside loops)

<
/ APACHE

NEW THREAD

<~ Be careful with JSON in large objects
NEW THREAD

NEW THREAD < Don't use too complex regular |
expressions (e.g. nested quantifiers)

NEW THREAD

NEW THREAD

YW @JONASSCHMEDTM

=G TION

D
=

I_II_II

LECTURE

HOW NODEJs WORKS: A LUOK BERIND

THE SCENES

VENTS AND EVENT-DRIVEN

ARCHITECT

URE

THE EVENT-DRIVEN ARCHITECTURE

OBSERVER PATTERN

Event emitter — Event listener
EMITS

EVENTS

| Attached

CALLS

callback function

EMITTER LISTENER
‘request’
NEW REQUES event - server = http
ON SERVER server I' request Request received
_} console ('Request received

127.0.0.1:8000 ('Request received

<~ Instance of EventEmitter class

YW @JONASSCHMEDTM

SECTION

HOW NODEJs WORKS: A LUOK BERIND
THE SCENES

=

LECTURE
INTRODUCTION 10 STREAMS

I_II_II

WHAT ARE STREAMS?

Used to process (read and write) data piece by piece (chunks),
without completing the whole read or write operation, and

therefore without keeping all the data iIn memory.

NETFLIX You{TD)

<~ Perfect for handling large volumes of data, for example videos;

<~ More efficient data processing in terms of memory (no need to keep all data in
memory) and time (we don’t have to wait until all the data is available).

NODE.JS STREAMS FUNDAMENTALS

<~ Streams are instances of
the EventEmitter class!

READABLE STREAMS

WRITABLE STREAMS

DUPLEX STREAMS

TRANSFORM STREAMS

DESCRIPTION
<

Streams from which
we can read
(consume) data

Streams to which we
can write data

Streams that are
both readable and
writable

Duplex streams that
transform data as it
IS written or read

EXAMPLE IMPORTANT EVENTS IMPORTANT FUNCTIONS
4 % 4

<" httprequests
<~ fsread streams

http responses < drain < write()
fs write streams <= finish < end()

CONSUME STREAMS
<~ net web socket

< z1ib Gzip creation

YW @JONASSCHMEDTM

=G TION

HOW NODEJs WORKS: A LUOK BERIND
THE SCENES

D
=

I_II_II

LECTURE
AUW REQUIRING MODULES REALLY WORKS

The COMMONJS MODULE SYSTEM

<~ Each JavaScript file is treated as a separate module;
<~ Node.js uses the CommonJS module system: require(), exports or module.exports;
<~ ES module system is used in browsers: import/export;

<~ There have been attempts to bring ES modules to node.js (.mjs).

Where does it come from?

WHAT HAPPENS WHEN WE REQUIRE() A MODULE

(
— WRAPPING —> EXECUTION — RE)T(ESE'T';G —>

|

<~ Core modules
PATH RESOLVING: HOW NODE DECIDES WHICH MODULE TO LOAD

W Start with core modules;
& If beginswith ¢./¢or ¢../¢ < Try to load developer module;
If no file found <~ Try to find folder with index.js init;

& Else < Go to node_modules/ and try to find module there.

CACHING

)

require('test-module"');

Where does it come from?

(function]exports| |require]modulef | filename]|__dirname] {

r);

<~ require: function to require modules;

<~ modu'le: reference to the current module;

=~ exports: areference to module.exports, used to export object from a module;
<~ __f1ilename: absolute path of the current module’s file;

<~ __dirname: directory name of the current module.

WHAT HAPPENS WHEN WE REQUIRE() A MODULE

()

RESOLVING & RETURNING
A — WRAPPING — EXECUTION — B ORTS —> CACHING

|

<~ require function returns exports of the required module;
Requiring module 2

<~ module.exports is the returned object (important!); /\

<~ Usemodule.exports to export one single variable, e.g. one

MODULE MODULE

class or one function (module.exports = Calculator);

1 2

<~ Use exports to export multiple named variables \/
(exports.add = (a, b) => a + b);

Exporting from module 2

<~ This is how we import data from one module into another; -
Importing to module 1

WHAT HAPPENS WHEN WE REQUIRE() A MODULE

(
RESOLVING & RETURNING
LOADING — WRAPPING —)) EXECUTION —) EYPORTS —) CACHING

)

SECTION 6 —
EXPRESS: LET'S START
BUILDING THE
NATOURS API

YW @JONASSCHMEDTM

SECTION

APRESS' LETS SIART BUILDING THE
NATOURS AP

II_I

LECTURE
WHAT IS EXPRESS?

I_II_II

WHAT 1S EXPRESS, AND WRY USE IT7?

—XOress

n A
o@d ¢

Express i1s a minimal node.js framework, a higher level of
abstraction;

Express contains a very robust set of features: complex
routing, easier handling of requests and responses,
middleware, server-side rendering, etc.;

Express allows for rapid development of node.js
applications: we don't have to re-invent the wheel,

Express makes It easier to organize our application into the
MVC architecture.

YW @JONASSCHMEDTM

SECTION

APRESS' LETS SIART BUILDING THE
NATOURS AP

II_I

LECTUR
APIS AND RESTFUL APl DESIGN

(i

WHAT IS AN APl ANYWAY'?

Application Programming Interface: a piece of software that can be used by

another piece of software, in order to allow applications to talk to each other.

<~ Web APIs <~ But, “Application” can be other things:

<~ Node.js' fs or http APIs (“node APIs");

<~ Browser's DOM JavaScript API;

<~ With object-oriented programming, when exposing
methods to the public, we're creating an API,

THe REST ARCHITECTURE

Separate API into logical
resources

Expose structured,
resource-based URLs

Use HTTP methods (verbs)

Send data as JSON
(usually)

Be stateless

THe REST ARCHITECTURE

Jonas Schmedtmann X

<~ Resource: Object or representation of something, which

has data associated to it. Any information that can be

named can be a resource.
Separate API into logical

resources tours users reviews | — — —

Expose structured, URL
resource-based URLs 1
https://www.natours.com/addNewTour
—|
Use HTTP methods (verbs) A2t
/getTour

Send data as JSON

(usually) <~ Endpoints should contain

only resources (nouns),

and use HTTP methods

Be stateless for actions!

/eetToursByUser

/deleteToursByUser

THe REST ARCHITECTURE

Separate API into logical
resources

Expose structured,
resource-based URLs

Use HTTP methods (verbs)

Send data as JSON
(usually)

Be stateless

/addNewTour

/eetTour

/updateTour

/deleteTour

/getToursByUser

/deleteToursByUser

—
— oursA7
/tours/7
PATCH |/tours/7
— DELETE |/tours/7

HTTP METHODS

— GET

—

Tour 1id

/users/3/tours

/ <~ |Create

< |Rgad

<~ lUpdate

< |Delete

CRUD
OPERATIONS

<~ Possibilities
are endless!

DELETE /users/3/tours/9

String Value Key-value pair
Separate API into logical

resources

"status': "sucess",
"data": {
"id": 5,
"tourName": "The Park Camper',

. ll: 5’
"tourName": "The Pgrk Camper",

Expose structured, rating": "ALO". ot ingt a.gn
resource-based URLs "guides”: [RESPONSE "quides™: |

r

! FORMATTING {

"name" : \"Steven Miller",
"role": \'"Lead Guide"

"name'": "Steven Miller",
"role": "Lead Guide"

Use HTTP methods (verbs)

": "Lisa Brown",
"+ "lour Guide"

"Lisa Brown",
"Tour Guide"

Send data as JSON
(usually)

Object Array <~ JSON:API

<~ OData JSON Protocol

https:/www.natours.com/tours/5

THe REST ARCHITECTURE

<~ Stateless RESTful API: All state is handled on the client. This means that each
request must contain all the information necessary to process a certain request.

_ _ The server should not have to remember previous requests.
Separate API into logical

resources

<~ Examples of state: loggedIn currentPage

Expose structured,
resource-based URLs

currentPage = 5 STATE ON SERVER

WEB nextPage = currentPage + 1
SERVER send (nextPage)

Use HTTP methods (verbs)

GET /tours/nextPage
Send data as JSON

(usually)

WEB
Be stateless GET /tours/page/6 ——

\ SERVER

STATE COMING FROM CLIENT

send(6)

//\ 2oNAsIO

SECTION

APRESS' LETS SIART BUILDING THE
NATOURS AP

II_I

NODE.JS. g EXPRESS &
MONGODB

THE COMPLETE BOOTCAMP

LECTUR

MIDOLEWARE AND THE REQUEST =
REoPUNSE CYCLE

(i

YW @JONASSCHMEDTM

THE ESSENCE OF EXPRESS DEVELOPMENT: THE REQUEST-RESPONSE CYCLE

<~ “Everything is middleware” (even routers) < “Pipeline”
<~ Order as defined in the code!

/

MIDDLEWARE STACK

7]

REQ |' RES // Middleware // Middleware // Middleware // Middleware
]
OBJ OBJ I . I I I . #

T T T T

<~ E.g: parsing body <~ E.g:logging <~ E.g: setting headers < E.g: router

REQUEST-RESPONSE CYCLE

SECTION 7 —
INTRODUCTION TO
MONGODB

YW @JONASSCHMEDTM

SECTION
INFSODUCTION TO MONGUDB

LECTUR
WHAI IS MONGODB?

(i

MONGODB: AN OVERVIEW

DATABASE

- mongoDB.

DATABASE

< NoSQL

COLLECTIONS
(“Tables”)

blog
users

reviews

title
length
auth~r
tags

title
length
authc
tags

title
length
autho

e title

length
author
tags

DOCUMENTS

(ll ROWS")

post
user

review

WHAT 1S MONGODB?

‘MongoDB is a document database with the scalability and flexibility that you want

with the querying and indexing that you need”

KEY MONGODB FEATURES: ’ mongo DB

<~ Document based: MongoDB stores data in documents (field-value pair data structures, NoSQL);

<~ Scalable: Very easy to distribute data across multiple machines as your users and amount of data grows;

<~ Flexible: No document data schema required, so each document can have different number and type of fields;
<~ Performant: Embedded data models, indexing, sharding, flexible documents, native duplication, etc.

<~ Free and open-source, published under the SSPL License.

<~ BSON: Data format MongoDB uses for data storage. Like

Column
JSON, but typed. So MongoDB documents are typed. T
id title author length publishe
- | 1 Rockets... [Elon Musk |3280 TRUE
Unique ID ' _id": ObjectID('9375209372634926"'),
"title": "Rockets, Cars and MongoDB",
"author": "Elon Musk",
“length": 3280, Values (typed) “JOIN tables”
Fields “published": true,
Iltagsll: [“MongODB“’ IISpacell , llevll] Reference by
"comments': | COmmentS_'Id
{ "author": "Jonas", "text": "Interesting stuff!" }
Embedded o ’ ’
"author": "Bill", "text": "How did oyu do it?" }, id autor text
documents "author": "Jeff", "text": "My rockets are better" } 1 Jonas Interesting stuff!
2 Bill How do you do it?
3 Jeff My rockets are better

| : <~ Data is always normalized
<~ Embedding/Denormalizing: Including related data into a single document. y

This allows for quicker access and easier data models (it's not always the
best solution though).

SECTION 8 —
USING MONGODB WITH
MONGOOSE

YW @JONASSCHMEDTM

SECTION
USING MONGUDB WITH MONGOOSE

LECTUR
WHAT IS MONGOOSE?

(i

WHAT 1S MONGOOSE, AND WHY USE IT?

Mongoose is an Object Data Modeling (ODM) library for
MongoDB and Node.js, a higher level of abstraction;

Mongoose allows for rapid and simple development of
mongoDB database interactions;

Features: schemas to model data and relationships, easy
data validation, simple query API, middleware, etc;

Mongoose schema: where we model our data, by describing
the structure of the data, default values, and validation;

Mongoose model: a wrapper for the schema, providing an
Interface to the database for CRUD operations.

SCHEMA — MODEL

//\ 2oNAsIO

NODE.JS. g EXPRESS &
MONGODB

THE COMPLETE BOOTCAMP

YW @JONASSCHMEDTM

SECTION

USING MONGUDB WITH MONGOOSE

LECTUR
INTRO TU BACK-END ARC

J

MVC. TYPES OF LOGIC, AN

(i

A TECTURE:

J MORE

MVYC ARCRITECTURE IN OUR EXPRESS APP

BUSINESS LOGIC

tourModel. js

userModel.js

APPLICATION LOGIC %

tourRouter.js %

userRouter.js

tourController.js overview.pug

userController.js tour.pug

login.pug

PRESENTATION LOGIC

APPLICATION VS. BUSINESS LOGIC

APPLICATION LOGIC CONTROLLER BUSINESS LOGIC

<~ Code that is only concerned about the application’s <~ Code that actually solves the business problem we set

Implementation, not the underlying business problem out to solve;

we're tryin lve (e.qg. showing an llin rs);
eretrying to solve (e.g. showing and selling tours); <~ Directly related to business rules, how the business

<~ Concerned about managing requests and responses; works, and business needs;

<~ About the app’s more technical aspects; <~ Examples:

<~ Bridge between model and view layers. <~ Creating new tours in the database;
<~ Checking if user's password is correct;

&

Validating user input data;

8

Ensuring only users who bought a tour can review it.

<~ Fat models/thin controllers: offload as much logic as possible into the

models, and keep the controllers as simple and lean as possible.

SECTION 9 —
ERROR HANDLING
WITH EXPRESS

YW @JONASSCHMEDTM

SECTION
ERRUR HANDLING WITH EXPRESS

I_II_II

LECTURE
AN OVERVIEW OF ERROR RANDLING

ERROR HANDLING IN EXPRESS: AN OVERVIEW

OPERATIONAL ERRORS PROGRAMMING ERRORS

Problems that we can predict will Bugs that we developers introduce
: : : : ERROR
happen at some point, so we just need Into our code. Difficult to find and
to handle them In advance. handle.
ERROR

ERROR

Invalid path accessed; <~ Reading properties on undefined,;

ERROR

Invalid user input (validator error <~ Passing a number where an object
_ . _ HANDLING
from mongoose); IS expected;
MIDDLEWARE
Failed to connect to server; <~ Using await without async;
Failed to connect to database; <~ Using req.query instead of
req.body;,

Request timeout;

= Etc... RESPONSE
Etc...

SECTION 10 —
AUTHENTICATION,
AUTHORIZATION AND
SECURITY

YW @JONASSCHMEDTM

SECTION

AULRENTICATION. AUTRORIZATION AN
SECURITY

I_II_II

LECTURE
AUW AU THENTICATION WITH JWT WORKS

HOW JSON WEB TOKEN (JWT) AUTHENTICATION WORKS

"POST /login {email, password} e
If user && password,

Create unique IJWT
\- q

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9.eyJ S EC R ET
pZCI6IjVijNzYANWF1INGRhNWQTNmYxZmY3MzU2MSJ

9.UDDSYCLKrn38DQ03QgkGVFfobPFbWDYmb@dgsc
5Yd-Y

Store JWT (cookie

or localStorage)

GET /someProtectedRoute @ a

" If valdid JwT,
HTTPS Allow access

PROTECTED DATA

WHAT A JWT LOOKS LIKE

E n COd ed PASTE A TOKEN HERE DeCOd ed EDIT THE PAYLOAD AND SECRET

HEADER: ARGORITHM & TOKEN TYPE

eyJhbGci0iJIUZITNiISINR5CCI6IKPXVC)Smay
pZCI6IjVjNzYANWFINGRhNWQ1NmYXZmY3MzU2M S

! " "HS256",
9.UDDSYCLKrn38DQ03QgkGVF fobPFbWDYmb@dgsc eyer s
5Yd-Y)

PAYLOAD: EATA

{
"id": "5c7685ae4da5d56f1ff73561"

}

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

<4— SECRET

) () secret base64 encoded

HOW SIGNING AND VERIFYING WORKS

HEADER + | S

o VERIFYING
+

PAYLOAD \
SIGNATURE 7 ORIGINAL TESE
/ SIGNATURE SIGNATURE
SECRET SECRET
SIGNING
COMPARE WITH ORIGINAL SIGNATURE
Encoded o Decoded - ruom mosecner
| test signature === signature < Data has not been modified < Authenticated
test signature !== signature < Data has been modified <= Not authenticated

eeeeeeeeeeeeeeeeeeee

) et e e ed <~ Without the secret, one will be able to manipulate the JWT data, because they cannot create a valid signature for the new datal!

YW @JONASSCHMEDTM

SECTION

AULRENTICATION. AUTRORIZATION AN
SECURITY

LECTUR
SECURITY BEST PRACTICES

(i

SECURITY BEST PRACTICES AND SUGGESTIONS

<~ COMPROMISED DATABASE =~ NOSQL QUERY INJECTION
Strongly encrypt passwords with salt and hash (bcrypt) Use mongoose for MongoDB (because of SchemaTypes)
Strongly encrypt password reset tokens (SHA 256) ﬁ Sanitize user input data

<~ BRUTE FORCE ATTACKS <~ OTHER BEST PRACTICES AND SUGGESTIONS
Use bcrypt (to make login requests slow) Always use HTTPS
&) Implement rate limiting (express-rate-limit) Create random password reset tokens with expiry dates
Implement maximum login attempts Deny access to JWT after password change

Don’t commit sensitive config data to Git

<~ CROSS-SITE SCRIPTING (XSS) ATTACKS Don’t send error details to clients

&) Store JWT in HTTPOnly cookies __ |
Prevent Cross-Site Request Forgery (csurf package)

& Sanitize user input data __ _ o _ _
Require re-authentication before a high-value action

k) Set special HTTP headers (helmet package) Implement a blacklist of untrusted JWT

= DENIAL-OF-SERVICE (DOS) ATTACK Confirm user email address after first creating account

&) Implement rate limiting (express-rate-1imit) Keep user logged in with refresh tokens

&) Limit body payload (in body-parser) Implement two-factor authentication

Avoid evil regular expressions &) Prevent parameter pollution causing Uncaught Exceptions

SECTION 11 —
MODELLING DATA AND
ADVANCED MONGOOSE

YW @JONASSCHMEDTM

=G TION

MODELLING DATA AND ADVANCED
MONGUUSE

D
|—|

LECTUR
MONGUDB DATA MODELLING

(i

‘DATA... WHAT? &"

Real-world
scenario

Unstructured
data

Structured, logical
data model

Example

<

Online
shop

categories

cart
suppliers
-ustomers
orders
products

categories

products <> suppliers

I customers

orders «—> cart

Different types of relationships
between data

Referencing/normalization vs.
embedding/denormalization

Embedding or referencing
other documents?

Types of referencing

f. TYPES OF RELATIONSRIPS BETWEEN DATA

> (1 movie can only have 1 name)

< 1:FEW < 1:MANY <~ 1:TON

TMANY 7 % 2
En<Em @ EnSEm EmS

\ . hundreds/thousands \ . millions...

(1 movie can win many awards)

log

movie actor

(One movie can have many actors, but
actor ! _
one actor can also play in many movies)

movie
movie actor

MANY -MANY

" id": ObjectID('222'),

"title": "Interstellar", " id": ObjectID('222'),

"releaseYear': 2014, _ "title": "Interstellar",
actgrs | "releaseYear": 2014,
ObjectID('555"); EMBEDDING/ "actors": |

ObjectID('777")

1

DENORMALIZATION !

"name": "Matthew McConaughey",
"age': 50,
"born": "Uvalde, USA™

"_id": ObjectIn('555"'),

"Matthew McConaughey",
: 50,

"Anne Hathaway",

: 37,
"Uvalde, USA" : "NYC, USA"
u ’
REFERENCING /
. ObjectIK('777"), NORMALIZATION

"Anne Hathaway",
: 37,
"NYC, USA"

-

)

‘¥ Impossible to query the embedded document on its own

‘¥ We need 2 queries to get data from referenced document

3. WHEN TO EMBED AND WHEN

<~ Combine all 3 criteria
to take decision!

Vol

a RELATIONSHIP TYPE

(How two datasets are
related to each other)

DATA ACCESS PATTERNS &——

(How often data is read and
written. Read/write ratio)

DATA CLOSENESS <&——

(How “much” the data is
related, how we want to query)

10 REFERENCE? A PRACTICAL FRAMEWORK

EMBEDDING

REFERENCING

< 1:MANY

< 1:FEW

< 1:TON
< 1:MANY
< MANY:MANY

Movies + Images (100)

<~ Data s mostly rea
<~ Data 1s updated a lot
<~ Data does nofchange quickly

<~ (Low read/write ratio)

Movies + Reviews
Movies + Images

<~ We frequently need to quer
<~ Datasets really belong together : J . e
both datasets on their own

User + Email Addresses .
Movies + Images

"_id": ObjectID('23'),
"app": "My Movie Database",
“"logs": [
ObjectID('1")
ObJectiD 2" 7,

ObjectID('28273927")

" \d": ObjectID('1'))
"type': "error",
"timastamp': 1412184926

" id": ObjectID{ '28273927"'),
"type': "error",
“"timestamp': 1412844672

~~ 1:FEW

" id": ObjectID{ '23"')),
! "My”Movie Database"

app -

" id":\ObjectID('1')
“"app'":l ObjectID('23"'),
"type'': “error,
"timestamp": 1412184926

" id": _0ObjectID('28273924")
"app":| ObjectID('23")
“type': “error,
"timestamp": 14

’

" id": ObjectID('23")),
"title": "Interstellamk,
"releaseYear': 2014,

L-Vak ofa ¥ o LI |

ObjectID('67"),

"_id": ObjectID{ '67"')),
“"name": "Matthew McConayghey",
"age'': 50,

"mAviec'' s [

ObjectID('23'),

<~ MANY:MANY

SUMMARY &

<~ The most important principle is: Structure your data to match the ways that your application queries and updates data;

<~ In other words: Identify the questions that arise from your application’s use cases first, and then model your data so that
the questions can get answered in the most efficient way;

<" In general, always favor embedding, unless there is a good reason not to embed. Especially on 1:FEW and 1:MANY
relationships;

<~ A 1:TON or a MANY:MANY relationship is usually a good reason to reference instead of embedding;
<~ Also, favor referencing when data is updated a lot and if you need to frequently access a dataset on its own;

<~ Use embedding when data is mostly read but rarely updated, and when two datasets belong intrinsically together;

<~ Don't allow arrays to grow indefinitely. Therefore, If you need to normalize, use child referencing for 1:MANY
relationships, and parent referencing for 1:TON relationships;

<~ Use two-way referencing for MANY:MANY relationships.

YW @JONASSCHMEDTM

=G TION

MODELLING DATA AND ADVANCED
MONGUUSE

D
|—|

LECTURE
DESIGNING OUR DATA MODEL

I_II_II

THE NATOURS DATA MODEL

userID: [<id>,
<id>, ..., <id>]

O 1:MANY O FEW:FEW

@ Parent referencmg Embedding
Q
tourID: <id> G & FEW:FEW G O 1:MANY
userID: <id> _ _
W Child referencing @ Parent referencing

or
[Embedding

O 1:MANY

tour guides

Parent referencing

c
—>

O 1:MANY

reviews

@ Parent referencing ourTD: <ids

Q Parent userID: <id>

SECTION 13 —
ADVANCED FEATURES:
PAYMENTS, EMAIL,
FILE UPLOADS

YW @JONASSCHMEDTM

SECTION

ADVANCED FEATURES: PAYMENTS, EMAIL
FILE UPLOADS

I_II_II

LECTURE
CREDIT CARD PAYMENTS WITH STRIPE

STRIPE WORKFLOW

)
P SECRET KEY

LL

c% Create Stripe Checkout Session
<

o)

% Request Checkout Session

LL]

-

CZ> PUBLIC KEY

o | | |

L Charge Credit Card using Session

ON SUCCESS (ONLY FOR DEPLOYED WEBSITE)

SECRET KEY

Use Stripe Webhook to Create New Booking

BACK-END

YW @JONASSCHMEDTM

SECTION

ADVANCED FEATURES: PAYMENTS, EMAIL
FILE UPLOADS

I_II_II

LECTURE
FINAL CONSIDERATIONS

CHALLENGES (API)

<~ Implement restriction that users can only review a tour that they have

actually booked;

< Implement nested booking routes: /tours/:id/bookings and/

users/:1d/bookings;

<~ Improve tour dates: add a participants and a soldOut field to each
date. A date then becomes like an instance of the tour. Then, when a user

books, they need to select one of the dates. A new booking will increase

the number of participants in the date, until it is booked out
(participants > maxGroupSize). So, when a user wants to book,

you need to check if tour on the selected date is still available;

<~ Implement advanced authentication features: confirm user emalil, keep

users logged in with refresh tokens, two-factor authentication, etc.

CHALLENGES (WEBSITE) =

<~ Implement a sign up from, similar to the login form;

<~ On the tour detall page, if a user has taken a tour, allow them add a

review directly on the website. Implement a form for this;

<~ Hide the entire booking section on the tour detail page if current user has

ALL TOURS W LOG OUT 9 Jonas
[[. 5
already booked the tour (also prevent duplicate bookings on the model);
y P P g :
THE SEA QIEIE'FOREST THE SNOW
EXPLORER HIKER ADVENTURER
Exploring ;he jaw-dropping US east coast by Breath;aking hike through the Canadian Banff Exciting ad\;enture in the snow with
foot and by boat National Park snowboarding and skiing

<~ Implement “like tour” functionality, with favourite tour page; el | EENETUEN | RN

<~ On the user account page, implement the “My Reviews" page, where all

reviews are displayed, and a user can edit them. (If you know React &3

this would be an amazing way to use the Natours API and train your skills!);

<~ For administrators, implement all the “Manage” pages, where they can
CRUD (create, read, update, delete) tours, users, reviews, and bookings.

